.Ensure being compatible with multiple platforms, including.NET 6.0,. NET Structure 4.6.2, and.NET Criterion 2.0 as well as above.Lessen addictions to stop version conflicts and the demand for tiing redirects.Transcribing Sound Info.Some of the major performances of the SDK is actually audio transcription. Designers may transcribe audio reports asynchronously or in real-time. Below is an example of exactly how to translate an audio file:.using AssemblyAI.utilizing AssemblyAI.Transcripts.var customer = brand new AssemblyAIClient(" YOUR_API_KEY").var transcript = await client.Transcripts.TranscribeAsync( brand new TranscriptParams.AudioUrl="https://storage.googleapis.com/aai-docs-samples/nbc.mp3". ).transcript.EnsureStatusCompleted().Console.WriteLine( transcript.Text).For nearby files, comparable code can be utilized to attain transcription.wait for utilizing var stream = brand-new FileStream("./ nbc.mp3", FileMode.Open).var transcript = wait for client.Transcripts.TranscribeAsync(.flow,.new TranscriptOptionalParams.LanguageCode = TranscriptLanguageCode.EnUs.).transcript.EnsureStatusCompleted().Console.WriteLine( transcript.Text).Real-Time Audio Transcription.The SDK also sustains real-time audio transcription using Streaming Speech-to-Text. This feature is specifically useful for uses demanding prompt processing of audio records.making use of AssemblyAI.Realtime.wait for using var scribe = brand new RealtimeTranscriber( brand new RealtimeTranscriberOptions.ApiKey="YOUR_API_KEY",.SampleRate = 16_000. ).transcriber.PartialTranscriptReceived.Subscribe( records =>Console.WriteLine($" Limited: transcript.Text "). ).transcriber.FinalTranscriptReceived.Subscribe( transcript =>Console.WriteLine($" Final: transcript.Text "). ).wait for transcriber.ConnectAsync().// Pseudocode for acquiring sound coming from a mic as an example.GetAudio( async (chunk) => await transcriber.SendAudioAsync( piece)).await transcriber.CloseAsync().Making Use Of LeMUR for LLM Apps.The SDK incorporates with LeMUR to make it possible for developers to develop huge foreign language style (LLM) apps on voice information. Listed below is actually an instance:.var lemurTaskParams = brand new LemurTaskParams.Prompt="Give a brief recap of the records.",.TranscriptIds = [transcript.Id],.FinalModel = LemurModel.AnthropicClaude3 _ 5_Sonnet..var feedback = wait for client.Lemur.TaskAsync( lemurTaskParams).Console.WriteLine( response.Response).Audio Intelligence Styles.In addition, the SDK features built-in help for audio intelligence models, allowing sentiment evaluation and other state-of-the-art attributes.var transcript = await client.Transcripts.TranscribeAsync( new TranscriptParams.AudioUrl="https://storage.googleapis.com/aai-docs-samples/nbc.mp3",.SentimentAnalysis = accurate. ).foreach (var lead to transcript.SentimentAnalysisResults!).Console.WriteLine( result.Text).Console.WriteLine( result.Sentiment)// POSITIVE, NEUTRAL, or downside.Console.WriteLine( result.Confidence).Console.WriteLine($" Timestamp: result.Start - result.End ").To read more, see the official AssemblyAI blog.Image resource: Shutterstock.